El cristo de la farola
Indice del artículo
El cristo de la farola
Primera parte
Segunda parte
Todas las páginas
Descripción: Investigación sobre el lugar óptimo donde colocar una farola en una isleta triangular para que ilumine el máximo de superficie. Rafael Losada Liste

Introducción

La realidad suele presentar problemas complejos y difícilmente analizables. A lo largo de los siglos, las Matemáticas han demostrado ser una buena herramienta para crear modelos basados en la realidad que permitan el estudio de esos problemas y alcanzar soluciones óptimas. Pero una cosa es adaptar el modelo a la realidad y otra adaptar la realidad al modelo.

Este artículo se divide en dos partes claramente diferenciadas, expuestas en forma de relato.

La primera, basada en un ejemplo de José Luis Álvarez García, desarrolla uno de tantos problemas, en realidad “ejercicios” (debido al contexto en el que aparecen), que pueblan los libros de texto habituales en la ESO.

La segunda parte invita a la profundización del problema en un caso más general. Está pensada para personas con un mayor conocimiento de la geometría del triángulo (bachillerato, universidad), si bien se continúan empleando recursos de geometría elemental.

Objetivo

Evidentemente, no hemos tratado en estos relatos de exponer demostraciones rigurosas que, aunque a menudo muy bellas, suelen ser largas y difíciles, sino de mostrar lo que un físico llamaría “leyes” (algo comprobable experimentalmente) con el objetivo de expresar -con cierta vehemencia, eso sí- dos principios:

  • El inmenso potencial de los programas de geometría dinámica tanto para el aprendizaje como para la investigación, si es que existe alguna diferencia sustancial entre ambos términos.

  • La posibilidad de investigar sobre muchos problemas que sin este tipo de herramientas serían difícilmente abordables.

En cuanto a este segundo punto debemos advertir que, siendo cualquier modelo una simplificación, la realidad puede admitir varios modelos distintos, según qué aspectos se obvien y cuáles se consideren. Por ejemplo, el criterio de “maximizar el área iluminada garantizando un mínimo de intensidad”, en el que se basan ambos relatos, podría muy bien ser sustituido por “maximizar la cantidad de luz recibida globalmente por la isleta”, que no es exactamente lo mismo.

Por último, también suele suceder que “la solución de un problema cambie el problema”. La conclusión de la madre de Irene en el segundo relato no hace sino abrir un mundo de preguntas. ¿Qué pasa si aumentamos el número de lados (un polígono de más de tres lados) o de farolas (varias a la vez iluminan la isleta)? ¿Y si, en ese caso, variamos la altura o intensidad lumínica de cada farola, o si las farolas resultan ser focos direccionables? Etc.

Sea cual fuere el criterio seguido y las condiciones más o menos generales, siempre deberemos volver a la realidad para cuestionar la idoneidad de las soluciones alcanzadas. ¡No sea que al final montemos un cristo!